$$=\frac{1}{\left(-4\right)^3} \qquad \left(a^{-m}=\frac{1}{a^m}\right)$$

(i)
$$(-4)^{5} \div (-4)^{8} \left(\frac{1}{2^{3}}\right)^{2}$$

(ii) $(-3)^{4} \times \left(\frac{5}{3}\right)^{4} \left(\frac{3^{-7}}{10}\right) \times 3^{-5}$
(iii) $(-4)^{5} \div (-4)^{8} = (-4)^{5-8} (a^{m} \div a^{n} = a^{m-n})$
 $= (-4)^{-3}$

 $\label{eq:Question 2:Simplify and express the result in power notation with positive exponent.$

(ii)
$$(-4)^{-2} = \frac{1}{(-4)^2} = \frac{1}{16}$$
 $\left(a^{-m} = \frac{1}{a^m}\right)$
(ii) $\left(\frac{1}{2}\right)^{-5} = \frac{1}{(2)^{-5}} = (2)^5 = 2 \times 2 \times 2 \times 2 \times 2 = 32$
(iii)

(i)
$$3^{-2} = \frac{1}{3^2} = \frac{1}{9}$$
 $\left(a^{-m} = \frac{1}{a^m}\right)$

(i) 3⁻² (ii) (-4)⁻² (iii)
$$\left(\frac{1}{2}\right)^{-5}$$

Question 1:Evaluate

Exercise 11.1

Exponents and Powers (Math)

(ii) (iv) $(3^{-1} + 4^{-1} + 5^{-1})^0$

(i) $(3^0 + 4^{-1}) \times 2^2$ (ii) $(2^{-1} \times 4^{-1}) \div 2^{-2}$

Question 3:Find the value of.

$$= (-1)^{4} \times 3^{4} \times \frac{5^{4}}{3^{4}} \qquad \left[(ab)^{m} = a^{m} \times b^{m} \right]$$

$$= (-1)^{4} \times 5^{4}$$

$$= 5^{4} \qquad \left[(-1)^{4} = 1 \right]$$
(iv) $(3^{-7} \div 3^{-10}) \times 3^{-5} = (3^{-7 - (-10)}) \times 3^{-5} (a^{m} \div a^{n} = a^{m-n})$

$$= 3^{3} \times 3^{-5}$$

$$= 3^{3 + (-5)} (a^{m} \times a^{n} = a^{m+n})$$

$$= 3^{-2}$$

$$= \frac{1}{3^{2}} \qquad \left(a^{-m} = \frac{1}{a^{m}} \right)$$
(v) $2^{-3} \times (-7)^{-3} = \frac{1}{2^{3}} \times \frac{1}{(-7)^{3}} \qquad \left(a^{-m} = \frac{1}{a^{m}} \right)$

$$= \frac{1}{\left[2 \times (-7) \right]^{3}} \qquad \left[a^{m} \times b^{m} = (ab)^{m} \right]$$

$$= \frac{1}{(-14)^{3}}$$

$$\left(\frac{1}{2^{3}}\right)^{2} = \frac{1}{\left(2^{3}\right)^{2}} = \frac{1}{2^{6}} \qquad \left(\left(a^{m}\right)^{n} = a^{mn}\right)$$
(ii)
$$\left(-3\right)^{4} \times \left(\frac{5}{3}\right)^{4} = \left(-1 \times 3\right)^{4} \times \frac{5^{4}}{3^{4}}$$
(iii)

$$= (2^{-1} \times 2^{-2}) \div 2^{-2}$$

= 2^{-1+ (-2)} ÷ 2⁻² (a^m × aⁿ = a^{m + n})
= 2⁻³ ÷ 2⁻²
= 2^{-3- (-2)} (a^m ÷ aⁿ = a^{m - n})

Question 4:Evaluate (i) $\frac{8^{-1} \times 5^3}{2^{-4}}$ (ii) $(5^{-1} \times 2^{-1}) \times 6^{-1}$

 $(5^{-1} \times 2^{-1}) \times 6^{-1} = \left(\frac{1}{5} \times \frac{1}{2}\right) \times \frac{1}{6}$

Question 5: Find the value of m for which $5m \div 5-3 = 55$.

Since the powers have same bases on both sides, their respective exponents must be equal.

 $\left(a^{-m}=\frac{1}{a^{m}}\right)$

 $\left(a^{-m}=\frac{1}{a^{m}}\right)$

 $\left(a^{m} \div a^{n} = a^{m-n}\right)$

 $= 2^{-3+2} = 2^{-1}$

 $= 1 (a^0 = 1)$

(ii) $(3^{-1} + 4^{-1} + 5^{-1})^0$

 $\frac{8^{-1} \times 5^3}{2^{-4}} = \frac{2^4 \times 5^3}{8^1}$

 $=\frac{2^4 \times 5^3}{2^3}=2^{4-3} \times 5^3$

 $= 2 \times 125 = 250$

 $=\frac{1}{10}\times\frac{1}{6}=\frac{1}{60}$

 $5^m \div 5^{-3} = 5^5$

 $5^{m+3} = 5^5$

m + 3 = 5

 $5^{m-(-3)} = 5^5 (a^m \div a^n = a^{m-n})$

(ii)

(i) $(2^{-1} \times 4^{-1}) \div 2^{-2} = [2^{-1} \times \{(2)^2\}^{-1}] \div 2^{-2}$

Question 6:Evaluate (i)
$$\begin{cases} \left(\frac{1}{3}\right)^{-1} - \left(\frac{1}{4}\right)^{-1} \right\}^{-1} & \left(\frac{5}{8}\right)^{-7} \times \left(\frac{8}{5}\right)^{-4} \\ & \left(\frac{1}{3}\right)^{-1} - \left(\frac{1}{4}\right)^{-1} \right\}^{-1} = \left\{ \left(\frac{3}{1}\right)^{1} - \left(\frac{4}{1}\right)^{1} \right\}^{-1} & \left(a^{-m} = \frac{1}{a^{m}}\right) \end{cases}$$
(i)

 $=\frac{8^{7}}{5^{7}}\times\frac{5^{4}}{8^{4}}\qquad \qquad \left(a^{-m}=\frac{1}{a^{m}}\right)$

 $= \{3-4\}^{-1} = (-1)^{-1} = \frac{1}{-1} = -1$

 $=\frac{8^{7-4}}{5^{7-4}}$

 $=\frac{8^3}{5^3}=\frac{512}{125}$

m = 5 - 3 m = 2

Question 7:Simplify. (i) $\frac{25 \times t^{-4}}{5^{-3} \times 10 \times t^{-8}} (t \neq 0)$ (ii) $\frac{3^{-5} \times 10^{-5} \times 125}{5^{-7} \times 6^{-5}}$

(ii) $\left(\frac{5}{8}\right)^{-7} \times \left(\frac{8}{5}\right)^{-4} = \frac{5^{-7}}{8^{-7}} \times \frac{8^{-4}}{5^{-4}} \qquad \left[\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}\right]$

 $\left(a^m \div a^n = a^{m-n}\right)$

$$\frac{25 \times t^{-4}}{5^{-3} \times 10 \times t^{-8}} = \frac{5^2 \times t^{-4}}{5^{-3} \times 5 \times 2 \times t^{-8}}$$

$$= \frac{5^{2} \times t^{-4}}{5^{-3+1} \times 2 \times t^{-8}} \qquad (a^{m} \times a^{n} = a^{m+n})$$

$$= \frac{5^{2} \times t^{-4}}{5^{-2} \times 2 \times t^{-8}} \qquad (a^{m} \div a^{n} = a^{m-n})$$

$$= \frac{5^{4}t^{4}}{2} = \frac{625 t^{4}}{2} \qquad (a^{m} \div a^{n} = a^{m-n})$$

$$= \frac{3^{-5} \times 10^{-5} \times 125}{5^{-7} \times 6^{-5}} = \frac{3^{-5} \times (2 \times 5)^{-5} \times 5^{3}}{5^{-7} \times (2 \times 3)^{-5}} \qquad [(a \times b)^{m} = a^{m} \times b^{m}]$$

$$= \frac{3^{-5} \times 2^{-5} \times 5^{-5} \times 5^{3}}{5^{-7} \times 2^{-5} \times 3^{-5}} \qquad [(a \times b)^{m} = a^{m-n})$$

$$= 3^{0} \times 2^{0} \times 5^{5} \qquad (a^{0} = 1)$$

$$= 5^{5}$$

Exercise 11.2

Question 1:Express the following numbers in standard form.

- (i) 0.00000000085 (ii) 0.000000000942
- (iii) 60200000000000 (iv) 0.000000837
- (v) 3186000000
- (i) $0.000000000085 = 8.5 \times 10^{-12}$
- (ii) $0.000000000942 = 9.42 \times 10^{-12}$
- (iii) $602000000000000 = 6.02 \times 10^{15}$
- (iv) $0.0000000837 = 8.37 \times 10^{-9}$
- (v) $3186000000 = 3.186 \times 10^{10}$

Question 2:Express the following numbers in usual form.

- (i) 3.02×10^{-6} (ii) 4.5×10^{4}
- (iii) 3×10^{-8} (iv) 1.0001×10^{9}
- (v) 5.8×10^{12} (vi) 3.61492×10^{6}
- (i) $3.02 \times 10^{-6} = 0.00000302$
- (ii) $4.5 \times 10^4 = 45000$
- (iii) $3 \times 10^{-8} = 0.0000003$
- (iv) $1.0001 \times 10^9 = 1000100000$
- (vi) $3.61492 \times 10^6 = 3614920$

Question 3:Express the number appearing in the following statements in standard form.

1

- (i) 1 micron is equal to 1000000 m.
- (ii) Charge of an electron is 0.000, 000, 000, 000, 000, 000, 16 coulomb.
- (iii) Size of a bacteria is 0.0000005 m
- (iv) Size of a plant cell is 0.00001275 m
- (v) Thickness of a thick paper is 0.07 mm

- (i) $1000000 = 1 \times 10^{-6}$
- (ii) 0.000, 000, 000, 000, 000, 000, 16 = 1.6×10^{-19}
- (iii) $0.0000005 = 5 \times 10^{-7}$
- (iv) $0.00001275 = 1.275 \times 10^{-5}$
- (v) $0.07 = 7 \times 10^{-2}$

Question 4:In a stack there are 5 books each of thickness 20 mm and 5 paper sheets each of thickness 0.016 mm. What is the total thickness of the stack?

Thickness of each book = 20 mm

Hence, thickness of 5 books = (5×20) mm = 100 mm

Thickness of each paper sheet = 0.016 mm

Hence, thickness of 5 paper sheets = (5 \times 0.016) mm = 0.080 mm

Total thickness of the stack = Thickness of 5 books + Thickness of 5 paper sheets

- = (100 + 0.080) mm
- = 100.08 mm
- $= 1.0008 \times 10^{2} \text{ mm}$

What have we discussed

1. Numbers with negative exponents obey the following laws of exponents.

(a) $a^m x a^n = a^{m+n}$	(b) $a^m \div a^n = a^{m-n}$	$(c)\left(a^{m}\right)^{n}=a^{mn}$
(d) $a^m x b^m = (ab)^m$	(e) a ⁰ = 1	(f) $\frac{a^m}{b^m} = \left(\frac{a}{b}\right)^m$

2. Very small numbers can be expressed in standard form using negative exponents.