Trigonometry

Question 1:

In ΔABC right angled at B, AB = 24 cm, BC = 7 m. Determine

- (i) sin A, cos A
- (ii) sin C, cos C

Answer:

Applying Pythagoras theorem for $\triangle ABC$, we obtain

$$AC^2 = AB^2 + BC^2$$

$$= (24 \text{ cm})^2 + (7 \text{ cm})^2$$

$$= (576 + 49) \text{ cm}^2$$

$$= 625 \text{ cm}^2$$

∴ AC =
$$\sqrt{625}$$
 cm = 25 cm

(i)
$$\sin A = \frac{\text{Side opposite to } \angle A}{\text{Hypotenuse}} = \frac{BC}{AC}$$

$$=\frac{7}{25}$$

$$\cos A = \frac{\text{Side adjacent to } \angle A}{\text{Hypotenuse}} = \frac{AB}{AC} = \frac{24}{25}$$

$$\sin C = \frac{\text{Side opposite to } \angle C}{\text{Hypotenuse}} = \frac{AB}{AC}$$

$$=\frac{24}{25}$$

$$\cos C = \frac{\text{Side adjacent to } \angle C}{\text{Hypotenuse}} = \frac{BC}{AC}$$

$$=\frac{7}{25}$$

Question 2:

In the given figure find tan P - cot R

Answer:

Applying Pythagoras theorem for $\Delta \text{PQR},$ we obtain

$$PR^2 = PQ^2 + QR^2$$

$$(13 \text{ cm})^2 = (12 \text{ cm})^2 + QR^2$$

$$169 \text{ cm}^2 = 144 \text{ cm}^2 + \text{QR}^2$$

$$25 \text{ cm}^2 = QR^2$$

$$QR = 5 cm$$

$$\tan P = \frac{\text{Side opposite to } \angle P}{\text{Side adjacent to } \angle P} = \frac{QR}{PQ}$$

$$= \frac{5}{12}$$

$$\cot R = \frac{\text{Side adjacent to } \angle R}{\text{Side opposite to } \angle R} = \frac{QR}{PQ}$$

$$= \frac{5}{12}$$

$$\tan P - \cot R = \frac{5}{12} - \frac{5}{12} = 0$$

Question 3:

If $\sin A = \frac{3}{4}$, calculate $\cos A$ and $\tan A$.

Answer:

Let ΔABC be a right-angled triangle, right-angled at point B.

Given that,

$$\sin A = \frac{3}{4}$$

$$\frac{BC}{AC} = \frac{3}{4}$$

Let BC be 3k. Therefore, AC will be 4k, where k is a positive integer.

$$AC^2 = AB^2 + BC^2$$

$$(4k)^2 = AB^2 + (3k)^2$$

$$16k^2 - 9k^2 = AB^2$$

$$7k^{2} = AB^{2}$$

$$AB = \sqrt{7}k$$

$$\cos A = \frac{\text{Side adjacent to } \angle A}{\text{Hypotenuse}}$$

$$= \frac{AB}{AC} = \frac{\sqrt{7}k}{4k} = \frac{\sqrt{7}}{4}$$

$$\tan A = \frac{\text{Side opposite to } \angle A}{\text{Side adjacent to } \angle A}$$

$$= \frac{BC}{AB} = \frac{3k}{\sqrt{7}k} = \frac{3}{\sqrt{7}}$$

Question 4:

Given 15 cot A = 8. Find sin A and sec A

Answer:

Consider a right-angled triangle, right-angled at B.

$$\cot A = \frac{\text{Side adjacent to } \angle A}{\text{Side opposite to } \angle A}$$
$$= \frac{AB}{BC}$$

It is given that,

$$\cot A = \frac{8}{15}$$

$$\frac{AB}{BC} = \frac{8}{15}$$

Let AB be 8k. Therefore, BC will be 15k, where k is a positive integer.

$$AC^{2} = AB^{2} + BC^{2}$$

$$= (8k)^{2} + (15k)^{2}$$

$$= 64k^{2} + 225k^{2}$$

$$= 289k^{2}$$

$$AC = 17k$$

$$\sin A = \frac{\text{Side opposite to } \angle A}{\text{Hypotenuse}} = \frac{BC}{AC}$$

$$= \frac{15k}{17k} = \frac{15}{17}$$

$$\sec A = \frac{\text{Hypotenuse}}{\text{Side adjacent to } \angle A}$$

$$= \frac{AC}{AB} = \frac{17}{8}$$

Question 5:

Given sec $\theta = \frac{13}{12}$, calculate all other trigonometric ratios.

Answer:

Consider a right-angle triangle $\triangle ABC$, right-angled at point B.

$$sec\theta = \frac{Hypotenuse}{Side adjacent to \angle \theta}$$

$$\frac{13}{12} = \frac{AC}{AB}$$

If AC is 13k, AB will be 12k, where k is a positive integer.

$$(AC)^2 = (AB)^2 + (BC)^2$$

$$(13k)^2 = (12k)^2 + (BC)^2$$

$$169k^2 = 144k^2 + BC^2$$

$$25k^2 = BC^2$$

$$BC = 5k$$

$$\sin \theta = \frac{\text{Side opposite to } \angle \theta}{\text{Hypotenuse}} = \frac{BC}{AC} = \frac{5k}{13k} = \frac{5}{13}$$

$$\cos \theta = \frac{\text{Side adjacent to } \angle \theta}{\text{Hypotenuse}} = \frac{\text{AB}}{\text{AC}} = \frac{12k}{13k} = \frac{12}{13}$$

$$\tan \theta = \frac{\text{Side opposite to } \angle \theta}{\text{Side adjacent to } \angle \theta} = \frac{\text{BC}}{\text{AB}} = \frac{5k}{12k} = \frac{5}{12}$$

$$\cot \theta = \frac{\text{Side adjacent to } \angle \theta}{\text{Side opposite to } \angle \theta} = \frac{\text{AB}}{\text{BC}} = \frac{12k}{5k} = \frac{12}{5}$$

$$\cos ec \ \theta = \frac{\text{Hypotenuse}}{\text{Side opposite to } \angle \theta} = \frac{\text{AC}}{\text{BC}} = \frac{13k}{5k} = \frac{13}{5}$$

Question 6:

If $\angle A$ and $\angle B$ are acute angles such that $\cos A = \cos B$, then show that $\angle A = \angle B$.

Answer:

Let us consider a triangle ABC in which CD ⊥ AB.

It is given that

cos A = cos B

$$\Rightarrow \frac{AD}{AC} = \frac{BD}{BC} \dots (1)$$

We have to prove $\angle A = \angle B$. To prove this, let us extend AC to P such that BC = CP.

From equation (1), we obtain

$$\frac{AD}{BD} = \frac{AC}{BC}$$

$$\Rightarrow \frac{AD}{BD} = \frac{AC}{CP}$$
(By construction, we have BC = CP) ... (2)

By using the converse of B.P.T,

CD||BP

⇒∠ACD = ∠CPB (Corresponding angles) ... (3)

And, ∠BCD = ∠CBP (Alternate interior angles) ... (4)

By construction, we have BC = CP.

∴ ∠CBP = ∠CPB (Angle opposite to equal sides of a triangle) ... (5)

From equations (3), (4), and (5), we obtain

In ΔCAD and ΔCBD,

∠ACD = ∠BCD [Using equation (6)]

∠CDA = ∠CDB [Both 90°]

Therefore, the remaining angles should be equal.

Alternatively,

Let us consider a triangle ABC in which CD \perp AB.

It is given that,

 $\cos A = \cos B$

$$\Rightarrow \frac{AD}{AC} = \frac{BD}{BC}$$

$$\Rightarrow \frac{AD}{BD} = \frac{AC}{BC}$$

Let
$$\frac{AD}{BD} = \frac{AC}{BC} = k$$

$$\Rightarrow$$
 AD = k BD ... (1)

And,
$$AC = k BC \dots (2)$$

Using Pythagoras theorem for triangles CAD and CBD, we obtain

$$CD^2 = AC^2 - AD^2 ... (3)$$

And,
$$CD^2 = BC^2 - BD^2 ... (4)$$

From equations (3) and (4), we obtain

$$AC^2 - AD^2 = BC^2 - BD^2$$

$$\Rightarrow$$
 $(k BC)^2 - (k BD)^2 = BC^2 - BD^2$

$$\Rightarrow k^2 (BC^2 - BD^2) = BC^2 - BD^2$$

$$\Rightarrow k^2 = 1$$

$$\Rightarrow k = 1$$

Putting this value in equation (2), we obtain

⇒ ∠A = ∠B(Angles opposite to equal sides of a triangle)

Question 7:

If
$$\cot \theta = \frac{7}{8}$$
, evaluate

$$\text{(i) } \frac{\left(1+\sin\theta\right)\left(1-\sin\theta\right)}{\left(1+\cos\theta\right)\left(1-\cos\theta\right)} \text{ (ii) } \cot^2\theta$$

Answer:

Let us consider a right triangle ABC, right-angled at point B.

$$cot θ = \frac{\text{Side adjacent to } \angle θ}{\text{Side opposite to } \angle θ} = \frac{BC}{AB}$$
$$= \frac{7}{8}$$

If BC is 7k, then AB will be 8k, where k is a positive integer.

$$AC^2 = AB^2 + BC^2$$

$$=(8\kappa)^2+(7\kappa)^2$$

$$=64k^2+49k^2$$

$$= 113k^2$$

$$AC = \sqrt{113}k$$

$$\sin \theta = \frac{\text{Side opposite to } \angle \theta}{\text{Hypotenuse}} = \frac{\text{AB}}{\text{AC}}$$
$$= \frac{8k}{\sqrt{113}k} = \frac{8}{\sqrt{113}}$$
$$\cos \theta = \frac{\text{Side adjacent to } \angle \theta}{\text{Hypotenuse}} = \frac{\text{BC}}{\text{AC}}$$
$$= \frac{7k}{\sqrt{113}k} = \frac{7}{\sqrt{113}}$$

(i)
$$\frac{(1+\sin\theta)(1-\sin\theta)}{(1+\cos\theta)(1-\cos\theta)} = \frac{(1-\sin^2\theta)}{(1-\cos^2\theta)}$$

$$= \frac{1 - \left(\frac{8}{\sqrt{113}}\right)^2}{1 - \left(\frac{7}{\sqrt{113}}\right)^2} = \frac{1 - \frac{64}{113}}{1 - \frac{49}{113}}$$

$$=\frac{\frac{49}{113}}{\frac{64}{113}} = \frac{49}{64}$$

(ii)
$$\cot^2 \theta = (\cot \theta)^2 = \left(\frac{7}{8}\right)^2 = \frac{49}{64}$$

Question 8:

If 3 cot A = 4, Check whether $\frac{1-\tan^2 A}{1+\tan^2 A} = \cos^2 A - \sin^2 A$ or not.

Answer:

It is given that 3cot A = 4

Or, cot A =
$$\frac{4}{3}$$

Consider a right triangle ABC, right-angled at point B.

$$\cot A = \frac{\text{Side adjacent to } \angle A}{\text{Side opposite to } \angle A}$$

$$\frac{AB}{BC} = \frac{4}{3}$$

If AB is 4k, then BC will be 3k, where k is a positive integer.

In AABC,

$$(AC)^2 = (AB)^2 + (BC)^2$$

= $(4\kappa)^2 + (3\kappa)^2$

$$= 16k^2 + 9k^2$$

$$= 25k^2$$

$$AC = 5k$$

$$\cos A = \frac{\text{Side adjacent to } \angle A}{\text{Hypotenuse}} = \frac{AB}{AC}$$

$$= \frac{4k}{5k} = \frac{4}{5}$$

$$\sin A = \frac{\text{Side opposite to } \angle A}{\text{Hypotenuse}} = \frac{BC}{AC}$$

$$= \frac{3k}{5k} = \frac{3}{5}$$

$$\tan A = \frac{\text{Side opposite to } \angle A}{\text{Hypotenuse}} = \frac{BC}{AB}$$
$$= \frac{3k}{4k} = \frac{3}{4}$$

$$\frac{1-\tan^2 A}{1+\tan^2 A} = \frac{1-\left(\frac{3}{4}\right)^2}{1+\left(\frac{3}{4}\right)^2} = \frac{1-\frac{9}{16}}{1+\frac{9}{16}}$$

$$=\frac{\frac{7}{16}}{\frac{25}{16}}=\frac{7}{25}$$

$$A = \left(\frac{4}{5}\right)^2 - \left(\frac{3}{5}\right)^2$$

$$\frac{7}{25}$$

$$=\cos^2 A - \sin^2 A$$

Question 9:

In $\triangle ABC$, right angled at B. If $\tan A = \frac{1}{\sqrt{3}}$, find the value of

- (i) sin A cos C + cos A sin C
- (ii) cos A cos C sin A sin C

Answer:

$$\tan A = \frac{1}{\sqrt{3}}$$

$$\frac{BC}{AB} = \frac{1}{\sqrt{3}}$$

If BC is κ , then AB will be $\sqrt{3}k$, where κ is a positive integer.

In ΔABC,

$$AC^2 = AB^2 + BC^2$$

$$= \left(\sqrt{3}k\right)^2 + \left(k\right)^2$$

$$=3k^2+k^2=4k^2$$

$$\sin A = \frac{\text{Side opposite to } \angle A}{\text{Hypotenuse}} = \frac{BC}{AC} = \frac{k}{2k} = \frac{1}{2}$$

$$\cos A = \frac{\text{Side adjacent to } \angle A}{\text{Hypotenuse}} = \frac{AB}{AC} = \frac{\sqrt{3}k}{2k} = \frac{\sqrt{3}}{2}$$

$$\sin C = \frac{\text{Side opposite to } \angle C}{\text{Hypotenuse}} = \frac{AB}{AC} = \frac{\sqrt{3}k}{2k} = \frac{\sqrt{3}}{2}$$

$$\cos C = \frac{\text{Side adjacent to } \angle C}{\text{Hypotenuse}} = \frac{BC}{AC} = \frac{k}{2k} = \frac{1}{2}$$

(i) sin A cos C + cos A sin C

$$= \left(\frac{1}{2}\right) \left(\frac{1}{2}\right) + \left(\frac{\sqrt{3}}{2}\right) \left(\frac{\sqrt{3}}{2}\right) = \frac{1}{4} + \frac{3}{4}$$

$$=\frac{4}{4}=1$$

(ii) cos A cos C - sin A sin C

$$= \left(\frac{\sqrt{3}}{2}\right) \left(\frac{1}{2}\right) - \left(\frac{1}{2}\right) \left(\frac{\sqrt{3}}{2}\right) = \frac{\sqrt{3}}{4} - \frac{\sqrt{3}}{4} = 0$$

Question 10:

In $\triangle PQR$, right angled at Q, PR + QR = 25 cm and PQ = 5 cm. Determine the values of sin P, cos P and tan P.

Answer:

Given that, PR + QR = 25

PQ = 5

Let PR be x.

Therefore, QR = 25 - x

Applying Pythagoras theorem in Δ PQR, we obtain

$$PR^2 = PQ^2 + QR^2$$

$$x^2 = (5)^2 + (25 - x)^2$$

$$x^2 = 25 + 625 + x^2 - 50x$$

$$50x = 650$$

$$x = 13$$

Therefore, PR = 13 cm

$$QR = (25 - 13) cm = 12 cm$$

$$\sin P = \frac{\text{Side opposite to } \angle P}{\text{Hypotenuse}} = \frac{QR}{PR} = \frac{12}{13}$$

$$\cos P = \frac{\text{Side adjacent to } \angle P}{\text{Hypotenuse}} = \frac{PQ}{PR} = \frac{5}{13}$$

$$\tan P = \frac{\text{Side opposite to } \angle P}{\text{Side adjacent to } \angle P} = \frac{QR}{PQ} = \frac{12}{5}$$

Question 11:

State whether the following are true or false. Justify your answer.

- (i) The value of tan A is always less than 1.
- (ii) $\sec A = \frac{12}{5}$ for some value of angle A.
- (iii) cos A is the abbreviation used for the cosecant of angle A.
- (iv) cot A is the product of cot and A
- (v) $\sin \theta = \frac{4}{3}$, for some angle θ

Answer:

(i) Consider a ΔABC, right-angled at B.

$$\tan A = \frac{\text{Side opposite to } \angle A}{\text{Side adjacent to } \angle A}$$

12

But
$$\frac{12}{5} > 1$$

So, tan A < 1 is not always true.

Hence, the given statement is false.

(ii)
$$\sec A = \frac{12}{5}$$

 $\frac{\text{riypotenuse}}{\text{Side adjacent to } \angle A} = \frac{12}{5}$

$$\frac{AC}{AB} = \frac{12}{5}$$

Let AC be 12k, AB will be 5k, where k is a positive integer.

$$AC^2 = AB^2 + BC^2$$

$$(12k)^2 = (5k)^2 + BC^2$$

$$144k^2 = 25k^2 + BC^2$$

$$BC^2 = 119k^2$$

$$BC = 10.9k$$

It can be observed that for given two sides AC = 12k and AB = 5k,

BC should be such that,

$$12k - 5k < BC < 12k + 5k$$

However, BC = 10.9k. Clearly, such a triangle is possible and hence, such value of sec A is possible. Hence, the given statement is true.

(iii) Abbreviation used for cosecant of angle A is cosec A. And cos A is the abbreviation used for cosine of angle A.

Hence, the given statement is false.

(iv) cot A is not the product of cot and A. It is the cotangent of ∠A.

Hence, the given statement is false.

(v)
$$\sin \theta = \frac{4}{3}$$

We know that in a right-angled triangle,

$$\sin \theta = \frac{\text{Side opposite to } \angle \theta}{\text{Hypotenuse}}$$

In a right-angled triangle, hypotenuse is always greater than the remaining two sides. Therefore, such value of $\sin \theta$ is not possible.

Hence, the given statement is false